Modules
Reference information for the model Modules
API.
eva.models.modules.ModelModule
Bases: LightningModule
The base model module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
metrics |
MetricsSchema | None
|
The metric groups to track. |
None
|
postprocess |
BatchPostProcess | None
|
A list of helper functions to apply after the loss and before the metrics calculation to the model predictions and targets. |
None
|
Source code in src/eva/core/models/modules/module.py
default_metrics: metrics_lib.MetricsSchema
property
The default metrics.
default_postprocess: batch_postprocess.BatchPostProcess
property
The default post-processes.
metrics_device: torch.device
property
Returns the device by which the metrics should be calculated.
eva.models.modules.HeadModule
Bases: ModelModule
Neural Net Head Module for training on features.
It can be used for supervised (mini-batch) stochastic gradient descent downstream tasks such as classification, regression and segmentation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
head |
Dict[str, Any] | MODEL_TYPE
|
The neural network that would be trained on the features.
If its a dictionary, it will be parsed to an object during the
|
required |
criterion |
Callable[..., Tensor]
|
The loss function to use. |
required |
backbone |
MODEL_TYPE | None
|
The feature extractor. If |
None
|
optimizer |
OptimizerCallable
|
The optimizer to use. |
Adam
|
lr_scheduler |
LRSchedulerCallable
|
The learning rate scheduler to use. |
ConstantLR
|
metrics |
MetricsSchema | None
|
The metric groups to track. |
None
|
postprocess |
BatchPostProcess | None
|
A list of helper functions to apply after the loss and before the metrics calculation to the model predictions and targets. |
None
|
save_head_only |
bool
|
Whether to save only the head during checkpointing. If False, will also save the backbone (not recommended when frozen). |
True
|
Source code in src/eva/core/models/modules/head.py
eva.models.modules.InferenceModule
Bases: ModelModule
An lightweight model module to perform inference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
backbone |
MODEL_TYPE
|
The network to be used for inference. |
required |